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Abstract

This paper describes an application of the method of moments

to determine resonant frequencies of irregularly shaped microstrip

patches embedded in a grounded dielectric slab. For analysis, the

microstrip patch is assumed to bc excited by a linearly polarized plane

wave that is normal to the patch. The surfacc-current density that

is induced on the patch because of the incident field is expressed in

terms of subdomain functions by dividing the patch into identical

rectangular subdomains. The amplitudes of the subdomain functions,

as a function of frequency, are determined using the electric-field

integral equation (EFIE) approach in conjunction with the method of

moments. The resonant frequencies of the patch are then obtained by

selecting the frequency at which the amplitude of the surface-current

density is real. The resonant frequencies of the equilateral triangular

and other nonrectangular patches are computed using the present

technique, and these frequencies are compared with measurements

and other independent calculations.

Introduction

Microstrip patch antennas have been studied extensively in recent years because they offer many

practical advantages, such as being lightweight, able to conform to the body of a host object, and

relatively easy and inexpensive to fabricate compared with other types of antennas. As a result,

many analytical approaches have been proposed to analyze microstrip patch antennas (ref. 1). Tile

electric-field integral equation (EFIE) approach in conjunction with tile method of moments is the

most widely used technique to study microstrip patch antennas (refs. 2 to 6). Early work (refs. 2

to 6) on the application of tile EFIE approach to patches is limited to microstrip patches of regular

shapes, such as those that are rectangular, circular, or elliptical. Furthermore, these earlier works

(refs. 2 to 6) use an approach in which tile surface-current density on the patch is expressed in terms

of entire domain functions. This paper describes the EFIE approach in conjunction with the method

of moments for solving tile problem of irregularly shaped microstrip patch antennas by expressing

the surface currents in terms of subdomain functions.

Several authors (refs. 7 and 8) have used tile EFIE approach to analyze irregularly shaped
antennas. The work in references 7 and 8, however, is applicable to irregular plates in free

space. In these papers, a nonrectangular plate is viewed as an interconnection of quadrilateral

plates. The currents on the quadrilateral plates are expressed in terms of nonrectangular surface

modes. Although the segmentation techniques used in reference 7 completely fill the area of the

nonrectangular plate, extra current modes are required to ensure continuity of surface-current density

at the joining plates of the junctions. Furthermore, when nonrectangular surface modes are used

to express the surface currents, the resulting matrix in the method of moments solution is of a

symmetrical but not of a Toeplitz nature; therefore, the computational time increases.

Mosig (ref. 9) and Michalski and Zheng (ref. 10) use a mixed potential integral equation approach

to solve the problem of irregularly shaped microstrip patches. In these studies, the EFIE is solved

by using numerical techniques in the spatial domain which may require special care to handle the

singularity in the Green's flmction. Martinson and Kuester (ref. 11) use generalized edge boundary

conditions to accurately analyze irregularly shaped microstrip patches. This approach, however, is

valid only for thin substrates (e.g., d/Ao <_ 0.01).

This work describes a segmentation technique to analyze irregularly shaped microstrip patch

antennas. We assume that an irregularly shaped patch is enclosed by a rectangle with sides equal



to Wx and Wy. Aher dividing Wz into (M + 1) sections and Wy into (N + 1) sections, the surface-

current density over the rectangle is expressed in terms of overlapping triangular flmctions in the

current flow direction and pulse functions in the orthogonal direction. A shape function in the current

expansion function is introduced to ensure zero current outside the patch. The shape function is

equal to 1 if the subdomain lies inside the irregularly shaped patch antenna, and it is equal to 0 if the

subdomain lies outside the irregularly shaped patch antenna. However, for the truly irregular shaped

patch, the subdomain that is close to the boundaries of the patch may be partly occupied by the

patch. In such cases, the subdomain is considered to be inside the patch if the area occupied by the

patch in that subdomain is more than 50 percent of the area of the subdomain. This process of finding

the shape function, however, becomes tedious and time consuming for complicated geometries.

The EFIE equation is reduced to a matrix equation that is solved using standard matrix equation

solver subroutines when the testing functions are selected to be the same as the expansion flmctions

(i.e., a Galerkin solution). The surface-current density is then used to determine the resonant

frequency of the patch. One of the disadvantages of the present method is that a large number of

subdomains are required to achieve convergence because the edge conditions for the surface-current

distributions are not explicity expressed. However, the Toeplitz nature of the impedance matrix is

still maintained, thus considerably reducing the matrix filling time (ref. 12).

Symbols

az, ay, az

d

Ei

Eio

Es(Jx)

Eti

Exi,

Ezs(Jx)

Ey. (Jx )

El0

E20

Fzmn (x, y)

F.p(x, y)

Fymn(X,y)

F ,p(x, y)

f0,...,5

unit vectors along x, y, and z axes

dielectric substrate thickness, cm

incident electric-field vector

intensity of incident electric field

scattered electric-field vector caused by Jx

scattered electric-field vector caused by Jy

tangential electric-field vector

x and y components of incident electric field

x component of scattered clectric-field caused by Jz

x component of scattered electric field caused by Jy

y component of scattered electric field caused by Jz

y component of scattered electric field caused by Jy

electric-field amplitude for perpendicular polarization, V/m

clectric-field amplitude for parallel polarization, V/m

expansion flmction for x-directed current on (m, n)th subdomain

expansion function for X-directed current on pth subdomain

expansion function for y-directed current on (m, n)th subdomain

expansion function for y-directed current on pth subdomain

resonant frequencies of various modes, CIHz

Fourier transform of Fxp, (x, y)

Fourier transform of Fyff(x, y)



Hi

ix(m,

iy(rn,

ix(V)

 y(p)

Jx(x, y)

yy(x,y)

J

k0

k/

_hi+ 1

'/7/_ n

N+I

P

Pro(x)

&(y)

P

p_

Q

Qm(Y)

Q,,(x)

r

vx(p')

vy(p')

Wx

%

X_ y, Z

X I, yl z l

Xm

Z I

incident magnetic field vector

complex amplitude of x-directed current density on (m, n)th subdomain, A/unit

area

complex amplitude of y-directed current density on (m, n)th subdomain, A/unit

area

complex amplitude of x-directed current density on pth subdomain, A/unit area

complex amplitude of y-directed current density on pth subdomain, A/unit area

x-directed induced surface-current density on plate, A/unit area

y-directed induced surface-current density on plate, A/unit area

=vc-f

propagation constant/wave number in free space

propagation vector of plane wave

number of subdivisions in x-direction

(m, n)th subdomain of induced current

number of subdivisions in y direction

total number of x-directed subdomains on plate

piecewise linear distribution in x-direction

piecewise linear distribution in y-direction

equivalent to (m, n)th x-directed subdomain

equivalent to (m _, n_)th x-directed subdomain

total number of y-directed subdomains on plate

pulse distribution in y-direction

pulse distribution in x-direction

position vector in direction of plane wave

reaction of p_th x-directed subdomain testing function with Exi

reaction of p_th y-directed subdomain testing function with Eyi

maximum dimension of plate in x-direction, cm

maximum dimension of plate in y-direction, cm

Cartesian coordinates of field point

Cartesian coordinates of source point

= _Z iX

location of patch, cm

mutual impcdancc between pth and p_th x-directcd subdomain currents, ohm

mutual impedancc bctween pth y-directed and p_th x-directed subdomain currents,

ohm



zp,p I
yx

OL

Ax

Ay

gr

¢i

,Xo

Abbreviation:

TM

Theory

mutual impedance between pth z-directed and prth y-directed subdomain currents,

ohm

mutual impedance between pth and p_th y-directed subdomain currents, ohm

wedge angle, deg

relative dielectric constant of slab material

free-space wave impedance, ohm

direction of angle of incident wave, dcg

wavelength in free space, cm

transverse magnetic

General Theory

Consider an irregularly shaped thin patch embedded in a dielectric slab and illuminated by a

plane wave as shown in figure 1. The incident field can be expressed as

Ei (x, y, z) = Eio [- az sin (¢i) + ay cos (¢i)] exp [(j koki ) • r] (1)

for perpendicular polarization, and

Eio
Hi (x, y, z) = _- [-az sin (¢i) + _y cos (¢i)] exp [(jkoki). r] (2)

, =,. •

for parallel polarization, where r/0 and k0 are the free-space wave impedance and the wave number,
respectively, and (0i,¢i) is the direction of the angle of incident wave. In equations (1) and (2),

Eio is the incident electric-field intensity; the quantities _x, _y, and _z are the unit vectors along

the x, y, and z axes, respectively; and

ki = ax sin (Oi) cos (¢i) + _y sin (Oi) sin (¢i) + az cos (Oi)

r -- "dxx + auY + _zz

The tangential electric field in the plane of the patch when the patch is absent (ref. 12) is then

obtained m_

Eti = El0 [-ax sin (¢i) + ay cos (¢i)] cxp {y [(k0ki). ax] x} + {j [(k0ki). ay] y} (3)

for perpendicular polarization, and

Eti = E20 [-ax cos (¢i) + _y sin (¢i)] exp {j [(kok/) • ax] x} + {j [(koki ) • _y] y} (4)

for parallel polarization, where

j 2Ei0 cos (Oi) sin (l_oz'kz)

Elo = kz cos (kodkz) + j cos (Oi) sin (kodkz) exp [jk0d cos (0i)]
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E20 = -j 2Eio kz cos (Oi) sin (koz'kz) exp [jkodcos (0i)]
Cr cos (Oi) cos (kodkz) + jkz sin (kodkz)

and kz = _er- sin2(0i).

Let Jx(x', yl) and Jy(x', y') be the x- and y-directed induced electric surface-current densities on

the patch and Es(Jz) and Es(Jy) be the scattered electric fields caused by the x- and y-directed

currents, respectively. Setting the total tangential electric field over the patch to zero yields

_z x [Es (Orx)+ Es (Jy) + Ei] =0 (Sa)

Equation (5a) can be written in component form as

Exs(&) + E.s (Jy) + E.._= o 1,
/Eys (Jx ) + Eys ( Jy ) + Eyi = 0

(Sb)

where the suffixes x and y arc used to indicate the x and y components of the scattered and incident

fields. To solve equations (5) for Jx(x', J) and Ju(x _, J), the x- and y-directed currents on the patch

are expressed as
M N+I

Jz(x',y')= _ _ ix(m,n) Fxmn(x',y') (6a)
m=l n=l

M+l N

j_(x',y') = _ _ i_(m,n)V_._,_(x',y') (6b)
m-1 n=l

In deriving equations (6), the irregularly shaped patch is first enclosed by a rectangle with

sides !J_ and Wy, and this rectangle is then divided into M + 1 and N + 1 sections along tile x

and y directions, respectively, as shown in figure l(b). The quantities iz(m,n) and iy(m,n) in

equations (6) are the amplitudes of surface-current densities at the (m,n)th subdonmin. The

expansion functions Fxmn(x', y') and Fumn(X t, y') in equations (6) are given by

Y_,_ (x',y') = F.,,(x') O,, (Y')

where

Y_,, (_', y') = 0,,, (x') e,_(yl)

1 - _.T z'
Pm (x') =

{,O_ (y') = 0

ax _ --

I_I+ 1

%
AY--N+ 1

In the above expressions, Pn(Y') is obtained by replacing m and x' in the expression for Pm(x')

by n and y', respectively. Similarly, Qm(x') is obtained by replacing n and y' in the expression

for Qn(y') by m and x t, respectively. For simplicity, the double summation with respect to m

and n in equations (6) can be represented by a single summation with respect to p. If P and Q are

((z,,, - _X.)< _' <__m)

(*m --<x' _<(xm-- ZX*))

((n- 1) Ay<y'_<nAy)

(Otherwise)



the maximumnumbersof the x- and y-directed subdomain cells, respectively, on tile patch, then

equations (6) may bc rewritten as

Jx(x',J) =E 1is (p) (x',y')

P+Q
_v (x', J) = E iy (p) F_p (X', J)

p=P+l

(7)

Using the method of moments and test modes that are identical to expansion modes, equations (5)

yield

where p_ = 1, 2, 3,..., P, and

ff Evs(Jx)G ,(x,y) axa + ff Eys(zv)G,( ,y) xdy+ ff (Sb)

where p' = P + 1, P + 2, P + 3,..., P + Q, the surface integrals in equations (8a) and (8b) are

carried out over the p_ subdomain. Equations (Sa) and (8b) can be written in the following convenient
matrix form:

[ ZyPP' _yyTP'P' iy (p) ] Vy (p') (9)

where p' = l, 2, 3,..., (P + Q) and Z P_p' and Z pp' are the self and mutual impedances between pth

and pith current basis functions. Detailed eXpress{on; for these impedances are given in reference 5.

The elements of excitation vectors in equation (9) are given by

vx (p') = -Elo sin (6i) fxp' [(k0ki • $_), (k0ki. av)] (10)

v v (p') = EIO cos (¢i) fyp, [(k0ki. az), (k0ki- _y)]

for perpendicular polarization, and

vx (p') = E20 cos (¢i) fxp' [(k0ki • az), (/;:ok/• ay)]

(11)

(12)

v v (p') = E2o sin (¢i) fyp, [(k0ki • ax), (k0ki • av)] (13)

for parallel polarization, where fxp' and fyp, are the Fourier transforms of Fxp, and Fyp,, respectively.

Resonant Frequency

The current density that is excited by an incident plane wave is obtained by solving the matrix

equation (9). The current amplitudes ix(p) and iv(p) are in general complex quantities; however,

at resonance, ix(p) and iy(p) are real numbers. The resonant frequency of the patch may therefore

be defined as a frequency at which the real part of iz (p) and iv (p) is maximum and the imaginary

part is zero. The dominant and higher order resonances of an irregularly shaped patch can therefore

be determined by finding the frequencies at which the real part of the surface-current density is

maximum and the imaginary part of the surface-current density is zero.

Numerical Results

In this section, resonant frequencies of irregularly shaped patch antennas are obtained and

compared with the measured data and the results obtained using the cavity model (refs. 13 and 14).
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Theinducedcurrentsiz(p) and iv(p) are determined using equation (9) as a function of frequency.

The dominant and higher order resonances of the patch are determined from the knowledge of the

variation of ix(p) and iy(p) as a function of frequency.

Resonant Frequencies of Equilateral Triangular Patch

As a first example, we select an equilateral triangular patch with dimensions a -- 10 cm, Er = 2.32,

and d = z / = 0.16 cm, as shown in figure 2. For resonant frequency calculations, the patch is assumed

to be excited by a parallel polarized plane wave at normal incidence with ¢i -- 0° or ¢i = 90 °.

The triangular patch is assumed to be enclosed by a rectangle with Wz = 10 cm and

Wy = 8.66 cm, as shown in figure 2. Selecting values of .hi and N (e.g., M = N = 11) and defin-

ing the (m, n)th subdomain for the x- and y-directed currents to be inside the triangular patch if

more than 50 percent of the subdomain area lies inside the patch, the matrix equation (9) is solved

for ix(p) and iy(p). The current densities ix(p) and iy(p) that are normalized to the incident field at

the center of the patch are then plotted in figures 3(a) and 3(b) for the two incidence angles (0i -- 0 °,

¢i = 90°) and (0 i ---- 0 °, 0i = 0°), respectively. From figures 3(a) and 3(b), we see that the resonant

frequencies at which the real part of the current density is maximum and the imaginary part of the

current density crosses zero are f0 = 1.210 GHz and fl = 1.256 GHz.

To test the dependence of these resonant frequencies on M and N, the resonant frequencies are

calculated as a function of M and N and are plotted in figure 4. This figure clearly shows that

M = N > 19 gives stable numerical results and that the first resonance occurs at f0 = 1.249 GHz

and the second resonance occurs at fl = 1.276 GHz.

Microstrip patch resonances are usually associated with the cavity modes described in refer-

ence 14. To identify the above two resonances with cavity modes, we must plot a vectorial repre-

sentation of the surface-current density over the patch that is excited by an incident plane wave at

resonant frequencies f0 = 1.249 GHz and fl = 1.276 GHz, as is done in figures 5(a) and 5(b). These

figures show that the magnitude of the surface-current density is proportional to the length of the

vector, while the direction of the current flow is indicated by the arrow direction. Upon careful

examination of the resonances of the TM01 (transverse magnetic) and TM10 cavity modes given in

reference 14, it is clear that the resonance at f0 = 1.249 GHz corresponds to the TM01 mode, and

that the resonance at fl = 1.276 GHz corresponds to the TM10 cavity mode. Note that the cavity

model discussed in references 13 and 14 predicts that the resonant frequencies of the TM10 and TM01

modes are identical. This technique, however, gives slightly different resonant frequencies of these

modes; this difference may be attributed to discretization of the patch.

To study higher order resonances of the triangular patch, surface-current densities that are excited

by plane waves for the incident angles of (Oi = 0°, ¢i = 0°) and (Oi = 0°, ¢i = 90°) are plotted in

figures 6 and 7, respectively, over a wider frequency band. The resonant frequencies of higher order

modes of the patch are determined from these figures, and they are presented in table 1 with the

corresponding cavity modes calculated using the cavity model (ref. 14) and measured results given
in reference 13.

The resonant frequencies of the TMmn and TMnrn modes are identical, as seen from the cavity

model formulations. As noted earlier, the present method that is based on diseretization predicts the

resonant frequencies of these modes to be slightly different from each other• Corresponding vectorial

representations of the surface-current densities at incident angles of (Oi = 0 °, ¢i = 0 °) and (Oi = 0°,

¢i = 90°) are depicted in figures 8 and 9, respectively, for higher order resonant frequencies.

Resonant Frequencies of Circular Patch

As a second example, we consider a circular patch with a = 1.88 cm, as shown in figure 10. This

patch is assumed to be excited by a parallel polarized plane wave at normal incidence with ¢i = 0°

7



or ¢i = 90°. Theinducedcurrentdensityiz(p) and iy(p) as a function of frequency at the center

of the patch is obtained after solving equation (9), and it is plotted in figures ll(a) and ll(b).

Values of M and N were arbitrarily selected to be M = N = 11. These figures show that the

frequency at which the real parts of the current densities are maximum and the imaginary parts

of the current densities are zero is f0 = 2.760 GHz. The first resonance of the patch is therefore

at 2.760 GHz. To test the dependence of the first resonance on _hi and N, f0 is determined as a

function of M and N, and it is plotted in figure 12. Figure 12 clearly shows that M = N > 19

gives stable numerical results. This figure also gives the first resonant frequency of the circular

patch obtained using the method described in reference 15. Good agreement exists between the

two results for M -- N :> 19. The vectorial representations of the surface-current density over the

circular patch, excited by the x- and y-directed linearly polarized plane waves at the first resonant

frequency, are shown in figures 13(a) and 13(b), respectively. Comparison of this representation

with the cavity model representation (ref. 14) indicates that the resonant mode at a frequency of

2.760 GHz corresponds to the TMll cavity mode.

Higher order resonances of the circular Patch arc determined, and they are given in table 2. This

table also gives higher order resonances that are calculated using the cavity model (ref. 14). Good

agreement exists between the two methods. A vectorial representation of the surface-current densities

at higher order resonant frequencies is given in figure 14. A comparison of these representations

with the representations obtained by the cavity model confirms that resonances at frequencies

of 4.685 GHz, 5.855 GHz, and 6.360 GHz correspond to the TM21, TM02, and TM31 cavity modes

(ref. 14).

Resonant Frequency of Trapezoidal Patch

As a third example, we consider a trapezoidal patch with dimensions as shown in figure 15.

Figures 16(a) and 16(b) present the variation of current density as a function of frequency at the

center of the trapezoidal patch for two angles of incidence. These plots show that the frequency at

which the real part of the current density is maximum while the imaginary part is zero is 1.342 GHz.

The first resonance of the patch therefore occurs at a frequency of 1.342 GHz. To test the dependence

of the first resonance on M and N, the first resonance frequency of the patch is calculated as a

function of .hi and N, and it is given in table 3. Table 3 clearly shows that M > 12 and N >_ 6 give

stable numerical results. Figure 17 gives the vectorial representation of the surface-current density

on the patch at the first resonance for incident angle of (0i = 0°, ¢i = 0°) •

Conclusions

An electric-field integral equation approach in conjunction with the method of moments has been

used to determine the resonant frequencies of irregularly shaped microstrip patches. Numerical

results obtained using this approach compare well with experimental results and other independent

calculations. Discretization of an irregular patch into symmetrical rectangular subdomains, in the

present technique, results in a symmetrical and block Toeplitz impedance matrix. The discretization

scheme used, however, does not explicitly enforce the proper edge conditions on the surface-

current distribution. As a result, a large number of subdomains are required to achieve numerical

convergence.

NASA Langley Research Center
Hampton, VA 23681-0001
August 16, 1993
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Table 1. Calculated and Measured Resonant Frequencies of

Equilateral Triangular Patch for M = N = 19

[Patch shown in fig. 2]

Resonant frequency, GHz

Measured results Cavity model

Mode Present method (ref. 12) (ref. 13)

TM01 1.249 1.280 1.299

TM10

TM11

TM02

TM20

TM12

TM21

1.276

2.172

2.525

2.510

3.265

3.356

2.242

2.550

3.400

2.252

2.599

3.439

Table 2. Calculated Resonant Frequencies of Higher

Order Modes of Circular Patch

[Patch shown in fig. 10]

Resonant frequency, GHz

Mode Present method

TMll 2.816 2.818

TM21 4.685 4.674

TM02 5.855 5.864

Cavity model

(ref. 13)

Tablc 3. Resonant Frequencies of Trapezoidal Patch
for Various Values of M and N

[Patch shown in fig. 15]

M

12

14

16

18

20

N Resonant frequency, GHz

1.370

1.345

1.342

8 1.343

9 1.343

10 1.342
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(a) (0i = 0°, ¢i = 90°); f0 = 1.249 GHz (TMm mode case).

Figure 5. Vectorial representation of surface-current density on equilateral triangular patch (shown
in fig. 2) excited by plane wave with angles of incidence of (Oi = 0 °, ¢i = 90°) and (Oi = 0°,
¢i = 0°), f0 = 1.249 GHz (TM01 mode case), and fl = 1.276 GHz (TM10 mode case).
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(b) (Oi = 0 °, ¢i = 0°); fl = 1.276 CHz (TM10 mode case).

Figure 5. Concluded.
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Figure8.

(a) ./'2= 2.172GHz(TMI1modecase).

Vectorialrepresentationofsurface-currentdensityonequilateraltriangularpatch(shownin
fig.2)excitedbyplanewavewith angleof incidenceof(_i = 0°, ¢i = 0°) and resonant frequencies
]'2 = 2.172 CHz (TMll mode case), f4 = 2.510 CHz (TM20 mode case), and f5 = 3.355 GHz
(TM21 mode case).
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(b) f4 = 2.510 GHz (TM20 mode ease).

Figure 8. Continued.
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(c) f5 -- 3.355 GHz (TM21 mode case).

Figure 8. Concluded.
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(a) f2 = 2.172 GHz (TMll mode case).

Figure 9. Vectorial representation of surface-current density on equilateral triangular patch (shown in
fig. 2) excited by plane wave with angle of incidence of (Oi = 0°, 4hi = 90 °) and resonant frequencies
f2 = 2.172 GHz (TMll mode case), f4 = 2.510 GHz (TM02 mode case), and fs = 3.265 GHz
(TM17 mode case).
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(b) f4 = 2.510 GHz (TM02 mode case).

Figure 9, Continued.
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(c) f5 = 3.265 GHz (TM12 mode case).

Figure 9. Concluded.
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(a) (_ =0 °, ¢_=0°).

Figure 13. Vectorial representation of surface-current density on circular patch (shown in fig. 10)
excited by plane wave with angles of incidence of (t)i = 0°, ¢i = 0°) and (_i = 0°, ¢i = 90°) and
fo = 2.796 GHz (TM!! mode case).
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Figure 14. Vcctorial representation of surface-current density on circular patch (shown in fig. 10)
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(b) f2 = 5.855 GHz (TM02 mode case).

Figure 14. Continued.
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